Assignment 3: Line Integrals and Vector Fields:
Solutions
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(b) The equation of the line is (1 — 3t,4 + 4t),0 < ¢ < 1. Thus the
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2. Since the path is closed, we can use Green’s Theorem. Note that the
path is negatively oriented, so the integral becomes
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where D is the lower half of the circle 2% + y?> = 4. Putting in the
partial derivatives, this reduces to
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We now switch to polar co-ordinates to get
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the vector field is conservative.



(b) If 7f = F, we know
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Integrating the first with respect to x gives

f=a+ay’ +g(y).
Differentiating this with respect to y gives
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Comparing this with the above expression for O—J; gives ¢'(y) = 4,

so g(y) =4y + C. So an equation for f is

f=a"+xy’ + 4y
(a) If 7f = F, we know
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Integrating the first with respect to x gives
f=42"2+g(y,2)

Differentiating this with respect to y gives
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Comparing this with our above expression gives
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Integrating this with respect to y gives
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Thus we have
f =424y — 3y*2* 4+ h(2)

Differentiating this with respect to z gives
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Comparing this with above gives h'(z) = 0, so h(z) = C. Thus
f =42z +y—3y°2°

(b) From (a), we know that F is conservative. Moreover, the path C'
is closed. Thus, by the fundamental theorem of line integrals, the
integral is 0.



