Assignment 3: Line Integrals and Vector Fields: Solutions

1. (a)

$$
\int_C x^3 + y \, ds
$$
\n
$$
= \int_0^1 ((3t)^3 + (t^3)) \sqrt{(3)^2 + (3t^2)^2} \, dt
$$
\n
$$
= \int_0^1 28t^3 \sqrt{9 + 9t^4} \, dt
$$
\n
$$
= 84 \int_0^1 t^3 \sqrt{1 + t^4} \, dt
$$
\n
$$
= 84 \left(\frac{(1 + t^4)^{\frac{3}{2}}}{6} \right)_0^1
$$
\n
$$
= 14(2^{\frac{3}{2}} - 1)
$$

(b) The equation of the line is $(1 - 3t, 4 + 4t)$, $0 \le t \le 1$. Thus the integral is

$$
\int_0^1 ((1-3t)^2 + (4+4t)^2)(-3) dt
$$

= -3 $\int_0^1 1 - 6t + 9t^2 + 16 + 32t + 16t^2 dt$
= -3 $\int_0^1 17 + 26t + 25t^2 dt$
= -3 $\left(17t + 13t^2 + \frac{25t^3}{3}\right)_0^1$
= -3 $\left(17 + 13 + \frac{25}{3}\right)$
= -115

(c)

$$
\int_C \mathbf{F} \cdot \, dr
$$

$$
= \int_C P dx + Q dy + R dz
$$

\n
$$
= \int_{-1}^{1} (e^t e^{2t})(e^t) + (e^{-t} + e^{2t})(-e^{-t}) + (e^t)(2e^{2t}) dt
$$

\n
$$
= \int_{-1}^{1} e^{4t} - e^{-2t} - e^t + 2e^{3t} dt
$$

\n
$$
= \left(\frac{e^{4t}}{4} + \frac{e^{-2t}}{2} - e^t + \frac{2e^{3t}}{3}\right)_{-1}^{1}
$$

\n
$$
= \frac{e^4}{4} + \frac{e^{-2}}{2} - e + \frac{2e^3}{3} - \frac{e^{-4}}{4} - \frac{e^2}{2} + e^{-1} - \frac{2e^{-3}}{3}
$$

2. Since the path is closed, we can use Green's Theorem. Note that the path is negatively oriented, so the integral becomes

$$
-\int_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \, dA
$$

where D is the lower half of the circle $x^2 + y^2 = 4$. Putting in the partial derivatives, this reduces to

$$
-\int_D -x \, dA = \int_D x \, dA
$$

We now switch to polar co-ordinates to get

$$
\int_{\pi}^{2\pi} \int_{0}^{2\pi} (r \cos \theta) r dr d\theta
$$

=
$$
\int_{\pi}^{2\pi} \int_{0}^{2} r^{2} \cos \theta dr d\theta
$$

=
$$
\frac{8}{3} \int_{\pi}^{2\pi} \cos \theta dr d\theta
$$

=
$$
\frac{8}{3} (\sin \theta) |_{\pi}^{2\pi}
$$

= 0

3. (a) Since

$$
\frac{\partial Q}{\partial x} = 3y^2 \text{ and } \frac{\partial P}{\partial y} = 3y^2,
$$

the vector field is conservative.

(b) If $\bigtriangledown f = \mathbf{F}$, we know

$$
\frac{\partial f}{\partial x} = 2x + y^3 \text{ and } \frac{\partial f}{\partial y} = 3xy^2 + 4
$$

Integrating the first with respect to x gives

$$
f = x^2 + xy^3 + g(y).
$$

Differentiating this with respect to y gives

$$
\frac{\partial f}{\partial y} = 3x^2y^2 + g'(y)
$$

Comparing this with the above expression for $\frac{\partial f}{\partial y}$ gives $g'(y) = 4$, so $g(y) = 4y + C$. So an equation for f is

$$
f = x^2 + xy^3 + 4y
$$

4. (a) If $\bigtriangledown f = \mathbf{F}$, we know

$$
\frac{\partial f}{\partial x}
$$
 = 8xz and $\frac{\partial f}{\partial y}$ = 1 - 6yz³ and $\frac{\partial f}{\partial z}$ = 4x² - 9y²z²

Integrating the first with respect to x gives

$$
f = 4x^2z + g(y, z)
$$

Differentiating this with respect to y gives

$$
\frac{\partial f}{\partial y} = \frac{\partial g}{\partial y}
$$

Comparing this with our above expression gives

$$
\frac{\partial g}{\partial y} = 1 - 6yz^3
$$

Integrating this with respect to y gives

$$
g = y - 3y^2z^3 + h(z)
$$

Thus we have

$$
f = 4x^2z + y - 3y^2z^3 + h(z)
$$

Differentiating this with respect to z gives

$$
\frac{\partial f}{\partial z} = 4x^2 - 9y^2z^2 + h'(z)
$$

Comparing this with above gives $h'(z) = 0$, so $h(z) = C$. Thus

$$
f = 4x^2z + y - 3y^2z^3
$$

(b) From (a), we know that ${\bf F}$ is conservative. Moreover, the path C is closed. Thus, by the fundamental theorem of line integrals, the integral is 0.